Code: 20EE3403

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

DIGITAL AND ANALOG CIRCUITS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks				
	UNIT-I								
1	a)	Convert the following binary numbers to	L2	CO1	7 M				
		decimal, octal and hexadecimal number							
		systems (i) 1011 (ii) 1101101.0110							
	b)	Convert the following decimal numbers to	L2	CO2	7 M				
		Gray code and Excess-3 code							
		(i) 23 (ii) 246							
OR									
2	a)	Minimize the function using K-Map	L3	CO3	7 M				
		$F(A,B,C,D) = \Pi M (1,2,3,5,6,7,8,9,12,13)$							
		and draw the logic diagram.							
	b)	Design 2-input NAND and NOR gates using	L3	CO3	7 M				
		CMOS Logic.							

UNIT-II								
3	a)	Design a 4-bit Binary to Gray code	L3	CO3	7 M			
		converter.						
	b)	Implement the following logic function	L3	CO2	7 M			
		using an 8x1 MUX						
		$F(A, B, C, D) = \Sigma m (1,3,4,11,12,13,14,15)$						
OR								
4	a)	Design a full adder using half-adders and	L3	CO3	7 M			
		OR gate.						
	b)	Design a 2-to-4 decoder and implement it	L4	CO3	7 M			
		using logic gates.						
UNIT-III								
5	a)	Explain the difference between a Latch and	L3	CO2	7 M			
		a Flip-Flop using Waveforms.						
	b)	Convert SR Flip-Flop to D-Flip-Flop.	L4	CO3	7 M			
	Γ	OR		, ,				
6	a)	Design a 3-bit synchronous Up-Counter	L3	CO3	7 M			
		using T-Flip-Flops.						
	b)	Explain the operation of 4-Bit SISO shift	L3	CO2	7 M			
		register.						
		UNIT-IV	_	T T				
7	a)	Explain about Inverting and Non-Inverting	L2	CO4	7 M			
	•	amplifiers.	<u> </u>					
	b)	Illustrate how op-amp acts as a	L4	CO4	7 M			
		differentiator. Discuss in detail.						
	OR							

8	a)	Draw first order low-pass filter using op-	L3	CO4	7 M				
		amp and explain.							
	b)	Discuss about the operation of RC Phase	L4	CO4	7 M				
		Shift Oscillator.							
	UNIT-V								
9	a)	Draw the diagram of inverted R-2R DAC	L3	CO5	7 M				
		and explain its operation in detail.							
	b)	Draw the diagram of Sample & Hold circuit	L3	CO5	7 M				
		and explain its operation in detail.							
OR									
10	a)	Draw the diagram of dual slope ADC and	L3	CO5	7 M				
		explain its operation in detail.							
	b)	Draw the diagram of Successive	L3	CO5	7 M				
		Approximation type ADC and explain the							
		operation of it.							